1	0							1 1	0	- 1	0	1	1		0		1	1	1		0	1	1 1		0	1		1	1	1 (0 0	0	1	1 0	21	1	0	11	1	1	0 0) ()	0	1	1	0	0 (0 0	11	1	0
1								1 1			- 1	- 1		1	0	0	0	1	1	0	1	0	0 0	1	1 1	0	1	0	0	0	1 0	1	0	0 0	21	1	0 0	0 0	0	0	0	1	0	1	0	1 (0	11	1	0	1
0	1		τ,	17	5.7	T I		0 0	- 1		- 1		1	0	1		1	1		1	1		0 0		1		0	0	0	0 0	0 0	0	0	1	1 1	1	0 (0 0	1	0	0 0	0 (1	0	0	0	0	1.0	0	1	0
			V	V	5			0 0		0		1				0		1				0	0 0	- 1	1		1	0	1	0 0	0 1	0	1	0	1 0	1	1 (0 0	0	1	0 0	0 0	0	1	1	1	1 0	зı	0	1	0
	1							0 1	1	0		0		0	0	0	1	0	0	1	0	1	1 1		1	1	1	1	0	1	1 0	0	0	0 0) 1	0	0	0	1	1	0 .	0	1	1	0	0	1	1 0	0	0	0
								0 1		0		1			0	1	0	1	0	0	1		0 1	0	0	0	0	0	0	0	0 1	1	1	1.0	0 0	0	0	1 0	1	1	1	1.1	0	0	1	0	0 0	οс	1	1	0
		0	1	1	0	1		0 1		0						1	1		0		1	1 (0 1		1	0	1	0	1	0 0	0 0	0			11	1	0	1 0	0	0	1	1	1	1	1	1.4	0 0	5 0	0	1	1
1	0		1			1		1 1			1			0		1	1		0	1		1	1 0	0	1		1	1	0	1 (0 1	0	1	0 0	0 1	0	0 0	D 1	1	0	1	1	0	1	1	1	1 (ΓC	1	0	0
- 1			1			1		1 1			1	1		1	1	1	0	1	1	1	0	1	0 0	0	1	1	1	1	0	1	1 1	0	1	0	1 1	1	1 0	1	0	0	1 0	0	1	0	1	1	1	1 1	1	0	0
		1			1			1 0		1	0	1			1	1					1	0	1 1	0	0	0	1	0	0	0	0 1	0	1	1 (0 1	0	1 (0 0	0	1	1 1	0	1	0	1	0	0 '	1 0	0	1	0
												1		0	0	1	0			0	0		1 1		0	0			0	1 0	0 0	1	1	1 1	1 1	0	1	1 1	1	0	1 1	0	1	1	0	0	0 0	зo	1	1	1
Ω														0	0	1	0			0	0		1 1		1 0	0			0	1 (0 1	0	1	1 0	D 1	1	0	0	0	1	0 0	1	0	1	0	1	1 0) 0	1	1	1
		1	- (51	Г		2	0	7	•			+ŀ		~			Ц			۰L		20	•							1 0	0	1	0	0	0	1	10	0	0	1 () 1	1	0	1	0	1	1.0	0	1	1
			-				4	3					L		L	a			C	IC	ⁿ		15	5						(0 1			1.1	0	1	0 0	0 0	1	1	0 0	0 (0	0	1	1	1	1 1	0	1	0
												0	0		1	0	0		0		1	1	0 1		1 1	1	1	0		0	1 0	0	1	0 (0 0	1	0	1 1	1	1	0	1 1	1	1	0	0	1	1 1	1	0	1
	Ω	C		nr		tor	S	~		dit.		D	rive	າດ	1	2r	h	Ά	he	ŝ	in	3+	, 1		of	0			1	0	1 1	1	0	1	1 1	0	1 0	D 1	1	1	0.	0	1	1		1	1 (зı	0	1	0
	0	C	.01	ΠÞ	u	LEI	-	ec	u	IL,	y,		ι γ	aç	у,	a	ų	5	ųc	<u>л</u> .	γ'n	μĽ.	y d		Oß	0	0	1	0	0	1 1	0	1	1	1 1		0 0	C 1	0	0	1 (0	0	0	0	0	0 0	зı	1	0	0
	0			0								0	1				0	0		1		1	0 1	C	0	1	1	1		1	1 1	0	1	0	0	1		0 1	0	1	1.0	0	1	0	1	0	1 0	0 I	1	1	0
														0	1	0		0		0	1	1	0 1		0	1	1	1	0	1	1 0	1	0	1 (0 1	0	1	1 0	1	0	0 0	0	1	1	0	0	0 0	D I	1	1	1
																		0	1	1			0 1	C	0	1	1	0	0	0		1	0	0 (0	1	0	1 1	1	0	1.	1 1	0	1	0	1	0	1 0	0	0	0
											0			0						1		1	0 0		1	1		0	0	0 (0 1		0	1 (D T	0		1 0	1	1	0 0	0	1	1	1	0	0	1 1	0	0	1
																		1					0 1			1	0		0	0 (0 0		0	1	1 1	1	1 (0 0	1	0	1 0	0		0	0	0	1.	1 0	1	0	0
																		0				0	0 0		1 1	1		1	0	0	1 1	1	0		0 1	0		1 0	1	0		1	1	1	1	0	1 (0 0	0	1	0
																	Ω	Ω				0	0 1		1 1		1	1	0	0	1 1	0	0	1	1 1	0	1	1 1	0	1	0.	1	1	1	0	0	1	1 1	1	0	
															0		0	0	1	0					1	0	1	0	0	0			1	1	1 0	0	1	0	1	0	1 0	0	1	1	0	0	0	1 1	0	1	0
														0											0		0		1	1	0 1	1		1 (0	1	0		0	0	1	1	0	0	0	0	1 0	0 0	0	1	1
																									0	0	0				1 0	0	0	1	1 1	1		1 1	1	1	1	0		1	0	1	1 0	5 1	1	1	1
													0				0								0	0		0	0	1 1	0 1			0 0	2 1	1	1	1 1	0	0	1 0		0	0	1	1	0 0	5 1	1	0	1
																	0						1 1		1			0		1	0 1		1	1	0	1		1	0	1	1	0	1		1	1	10	50		0	1
																				0		1	1 1		1	0	1			0 1	0 1			0 0	0	0	1		0	1	1 9	0	0			1	0 0	JO	0	0	-
																				0						0				1	1 1		1	0 0		0	0	1 1	0	1	1	1		0		0	1 0	2 0			0
																	0		0									1		1	1 0		0			0	0							0	0	0		1 0		0	
																						0			0	1	1	1	0	0	0 0			0.0			0						0	0	0		0				0
		Ŵ	/:1	lia	m	Ì.	т	511	~~~																	0	0	1		0		0	0	0.0			5			-			0	-			0 0	 	1	÷.	0
		v	VII	IId	IN .	J.	1	2116	зy																		0	0		0			-							-		0	0	0		0	0				0
																											1			0 1		1				0				1				1			2		0	0	0
		M	av	2	202	24																				1				1		0	-				0 1		0		1 0		0	1		0	0	1 0		1	0
			- y	-, .	-52																								1										0	0	1 1		0	1	0	0	č,		0	6	0
																													÷					0			0	1 0	0	0			1	1	1	0	1 0	1 1	0	1	0
																																							1.1							~					

Topics Covered Today:

- Understanding hacking: creative problem-solving.
- Computer security fundamentals: privacy on public networks.
- Deep dive into Tor: architecture, operation, and use cases.
- Hands-on demo: Installing and using Tor.
- Legal and security implications of using anonymity tools.

- Hacking involves using something in a way other than its intended purpose.
- It includes creative problem-solving, reverse engineering, and finding unconventional solutions.

Well Historical Hacks: The 2600 Hz Tone $_0$

- The 2600 Hz tone was discovered to grant access to a privileged mode on ATT's long-distance switching systems.
- Hackers could use this frequency to manipulate the phone system and make free long-distance calls.
- This tone could be perfectly replicated using a toy whistle given away in Cap'n Crunch cereal boxes, earning John Draper the nickname "Captain Crunch."

Well Joybubbles: The Blind Hacker

- Born as Joe Engressia, Joybubbles was a blind hacker with perfect pitch, allowing him to recognize and reproduce the exact tones needed to control the phone system.
- He is known for his ability to whistle precisely the right tones to manipulate phone networks, essentially performing what we now consider as early network hacking.
- His contributions highlight the role of ingenuity and unconventional methods in the development of hacking techniques.

Well John Draper: Captain Crunch

- John Draper discovered that a whistle given away in cereal boxes emitted a precise 2600 Hz tone.
- Using this whistle, he was able to mimic the tones used by ATT's system to route calls, effectively "hacking" the network.
- His exploits made him a legendary figure in the hacker community and brought the concept of "phreaking" (phone hacking) into the public eye.

Well Cultural Impact of Early Hacks

- These early hacks not only showcased vulnerabilities in telecommunication systems but also fostered a culture of curiosity and exploration.
- The exploits of figures like Draper and Joybubbles have inspired generations of hackers to explore systems and push the boundaries of what is possible.
- They also led to significant changes in technology security and regulation.

- The internet is designed as a public network where routing information is visible.
- Encryption can hide the payload but not the routing information.
- Importance of protecting both content and routing information for complete privacy.

- Tor is a network designed for anonymous communication.
- It uses a volunteer overlay network to route internet traffic across multiple nodes.
- This routing obfuscates user's location and usage, enhancing privacy and security.

Well How Tor Works: Detailed Architecture

- Entry Node (Guard Node): The first relay where encrypted traffic enters the Tor network.
- Middle Node (Relay Node): The relay(s) that pass your encrypted traffic to the next point.
- **Exit Node**: The final relay where encrypted traffic leaves the Tor network and reaches the internet.

- Tor uses multi-layer encryption (often visualized as an onion).
- Each node decrypts only enough to know the next destination, but not the final target.
- This layered encryption ensures that no single node knows both the source and the destination of the traffic.

Well Using Tor for Exploring the Dark Web

- The dark web is part of the internet not indexed by traditional search engines, accessible via Tor.
- It contains a mix of legal and illegal content, from anonymous forums to marketplaces.

- Demonstrating installation on different systems: Windows, macOS, and Linux.
- Key security settings and practices when using Tor to maintain anonymity and safety.

- Understanding the legal implications and potential risks of accessing the dark web.
- Best practices for using Tor safely, including avoiding illegal activities and securing personal data.

- Recap of Tor's role in enhancing online privacy and security.
- Encouragement to explore further and responsibly use knowledge and tools for privacy.

- Open for questions.
- Additional resources for further study and exploration.